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The objective of this paper is to analyze the behaviour of some minimization 
methods such as steepest descent method, generalized Newton and quasi- 
Newton methods under transformations of the variables of the function to be 
minimized. Energy and molecular coordinates are the function and the variables, 
respectively, in the case of geometry optimizations. Invariant levels are shown 
to be decisive for the area where the minimization methods can be successfully 
employed without rescaling of the coordinates. Specific conditions for symmetry 
conservation are worked out in context of invariant levels. Symmetry making, 
breaking and conservation are shown with working examples of geometry 
optimizations and calculation of energy minimum paths on the basis of certain 
kinds of molecular coordinates. 
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1. Introduction 

Geometry optimization has become more and more an integral part of quantum- 
chemical calculations [1-4] and incident thereto a matter of routine. Despite a small 
number of direct calculations of structures the desire to know the properties of 
molecules with the atoms in their "theoretical" equilibrium positions is important. 
Equilibrium geometries correspond to minima in potential energy ( ~  hypersurface). 
In order to localize them, methods of nonlinear programming, especially methods 
of unconstrained minimization have to be linked with quantum-mechanical 
approaches. The practicability of programming methods depends mainly on specific 
characteristics of energy expression. For example, methods which require the 
knowledge of first partials of the LCAO MO SCF energy [5, 6], or additionally of 
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second partials [7], enable the user to optimize geometries with highest effectiveness. 
However, the calculation of these derivatives involves some peculiarities: 

1. The demand to have the wave functions as self-consistent as possible [8]. 
2. The inclusion of d-orbitals requires the setting up of analytical formulas much 

more complicated than for s- and p-orbitals (the problem is often unsolved 
[3]-an exception is programme [9]). 

Other more general aspects have also to be considered: 

3. The proper selection of coordinates of molecular geometry [8] (each of the 
coordinates has to be rescaled with respect to the other [2]). 

4. The problem of conservation of molecular symmetry elements. 

The primary aim in writing this paper is twofold: at first the invariance of the 
minimization methods will be analyzed. The higher the level of invariance against 
certain transformations of the coordinates the less important is point 3. The second 
subject will be point 4. Symmetry conservation and symmetry breaking depend essen- 
tially on the special coordinates selected and on the specific invariant levels of the 
method of minimization used, whereas symmetry making is natural for situations 
in which a higher symmetry than the initial one is energetically favoured. 

Pechukas [10] investigated the conservation of symmetry along the steepest descent 
path on potential hypersurfaces. Mclver and Komornicki [5] mentioned that 
symmetry conservation occurred in the progress of their geometry optimizations 
and they discussed the relations to the Cartesian coordinates of atoms. However, 
generalizations have to be made carefully. For example, the assumption of a priori 
validity of symmetry conservation [11] is not justified for all kinds of internal 
coordinates. As another example, we [12] supposed some artifacts in a geometry 
optimization [13] ofbiphenyl. The trouble seems to be due to the special coordinates 
by means of which initial molecular symmetries (D2, D2h, D2a) are not conserved 

[121. 

2. Notations 

Internal coordinates such as bondlengths and angles between atoms, useful for 
describing a fixed molecular structure, are disadvantageous for geometrical changes 
in the course of unconstrained minimizations. Therefore we shall be concerned only 
with sets of independent coordinates. In other words, it is assumed that no 
(equality ~ )  constraints exist among the coordinates. As a consequence for practical 
applications of internal coordinates, curvilinear internal group coordinates may be 
employed instead of simple internal coordinates [8]. (Note that the use of curvilinear 
coordinates is not unusual. For example, a formulation of vibrational problems on 
this basis [14] offers the possibility implicitly to include in the approach anharmonic 
terms in a very convenient way.) Independent "external"  coordinates of atoms are 
easy to set up, for example by means of the most familiar ones- the  Cartesians. 

X n Let an arbitrary set of generally independent coordinates { ~}~ = 1 be written in a 
column vector 

x = ( x l ,  x~  . . . . .  x . )  ~. (1)  
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Here  superscript  T denotes transposit ion.  First partials g, = 8E/Ox~ of  the energy 
E may  be represented by the n-vector g. 

g = (gl ,  g2 . . . .  , g .)r .  (2) 

I t  is well known that  a replacement  of  the {xdp=l by a set of  " n e w "  coordinates 

{Yi}~= 1 gives 

q =_ j T g ,  (3) 

if q~ = 8E/Oy~ and 

[ ~xl/Oyl . . . Ox~/~y. ] 
J = ! ! (4) 

k 8xn /Sy l  8x~/Sy~ 

the Jacobian.  Let  J be a regular matrix,  that  is, let {x~} and {y~} be functionally 
independent.  A special relation between {x~} and {Yd consists in the regular linear 
basis t ransformat ion.  I f y  is the n-vector of  the coordinates {y~}, 

x = Ty ,  (5) 

where T denotes a regular matrix of  constant  coefficients. 

Relat ion (3) implies 

q = T r g ,  (6) 

in other words, T is identical with the Jacobian 

T = Y (7) 

in this case. 

I f g  satisfies 

g = O, (8) 

it is obvious that  also 

STg  = q = 0 (9) 

for  arbi t rary J. Thus stationarity of  a point  on the potential  surface does not  depend 
on the special choice of  coordinates.  Moreover ,  it can be assumed for  the sake of  
simplicity that  each n-vector x or y refers to an or thonormal ized basis. Such 
assumpt ion  is usual for Cartesian coordinates.  But very often conformat ional  maps  
show the energy as a function of  or thogonal  axes too, the latter representing for  
example two dihedral angles. Al though the vector  g (or q) is often called gradient 
vector,  it may  be identified with a " p h y s i c a l "  gradient only in cases where it refers 
to the Cartesian coordinates of  a toms.  

3. Invariant  Leve l s  - a C o m p a r i s o n  o f  M i n i m i z a t i o n  M e t h o d s  

Minimizat ion methods  of  the following general recurrence ansatz 

x~ + 1 = x~ - aiH~g~ (103 
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are considered, where ~ is a scalar and H a certain substitute to the inverse Hessian 
G -1. The second partials [G]~j = ~2E/Oxi~xj are the entries of the matrix G. 
Variants of  Eq. (10) define the steepest descent method [15], in which one has 

H = 1 = const., (11) 

the Newton method [15], where ~i and Hi are given by 

H~ = G~ -1 c~ = 1 = const., (12) 

and intermediately, various quasi-Newton methods, for which the Fletcher-Powell 
algorithm [16] 

H,+~ = Hi + Ai + Bi (13) 

Ax(Ax) T Hi A g ( A g ) r H i  (14) 
Ai = (Ax)T •g Bi -- (~g )rn ,  Ag 

AX = xi+l -- xi Ag = g~+l -- gi (15) 

may be representative. 

By Eq. (10) we get a sequence of vectors 

x0, xl . . . . .  x~, x i + l , . . . .  (16) 

Suppose the recurrence scheme is also applied to basic variables {Yi}, so that 

Y,+I = Yi - fl~K~qi, (17) 

here K in analogy to H denotes a substitute to the inverse of Hessian Q, having the 
entries [Q]ij = ~2E/OYi ~Yj. Thus a sequence of n-vectors 

Y0, Yl,. �9 Yi, Y~+I . . . .  (18) 

may be obtained. Initially, let Eqs. (10) and (17) be applied to identical molecular 
structures although the vectors xo, Yo satisfy 

Xo r Yo. (19) 

Conservation of the identity of  the molecular structures for all corresponding 
iterations of the minimization according to Eqs. (10) and (17), respectively, is an 
interesting feature. In the following, it will be convenient to call a minimization 
method to be invariant under a certain transformation of the coordinates, if xi+ 
represents the same molecular structure as y~ + 1, assuming that it is the ease with 
xi and yi. 

Having introduced minimization methods, we proceed to their invariant levels and 
begin by restricting the relations between {xi) and {y~), defining 

xi = Tyi ~ T -  1 (20) 

Again T is a matrix of constant coefficients. Inserting this into the recurrence 
formula (10) and considering the steepest descent method gives 

xi+l  = Tyi - cqTr- lq~,  (21) 
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Since there is no invariance with respect to linear transformations, relation (20) 
needs to be further specified. We replace T by an orthogonal transformation 

T = U UTU = UU T = 1, (22) 

i.e. 

x ,  = u y , .  (23) 

Under this condition we obtain by means of Eq. (17) 

x,+~ = u y , -  . ,Uq~ = U(y~ - .~q~) = uy~+~. (24) 

Thus the following theorem is established: The steepest descent method (Eqs. (10), 
(11)) is invariant under orthogonal linear transformations o f  the basic variables of  the 
function to be minimized. 

Upon the theorem a remarkable property can be found in context with the use of 
Cartesian coordinates of atoms as basic variables. The geometry optimization by 
means of the steepest descent method is absolutely unaffected by the orientation of 
the molecules in an external coordinate system. In other words, the internal 
geometry of a molecule as obtained after a certain number of iterations does not 
depend on the orientation of the external Cartesian system. 

Invariance of the Newton method has been studied recently [8]. In order to 
complete this work the proof may be repeated briefly. Inserting Eq. (20) into (10), 
taking into account Eqs. (6), (12) and 

Q = T r G T  (25) 

gives 

x~+l = T y i -  T Qf l T T T r - l q~ ,  (26) 

which we simplify immediately as 

x~ +1 = T(y~ - Q(~q~) = Ty~ +~. (27) 

Thus the Newton method is invariant under regular linear transformations (including 
orthogonal ones) o f  the basic variables of  the minimized function. 

The perhaps most remarkable consequence for the actual power of the geometry 
optimization which follows from the theorem reads: There is absolutely no 
advantage (only additional computational effort) to use such internal coordinates 
which are related to the Cartesians by a linear transformation instead of Cartesian 
coordinates themselves. Certainly, eliminating translation and rotation of the 
molecules is still necessary in order to avoid the singularity of G (or Q). The point 
is discussed at the end of the next section. 

Invariant levels of quasi-Newton methods depend specifically on the first iteration. 
Usually the methods iterate the first step down the path of steepest descent. Hence 
we have 

Ho = 1 (28) 
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and according to Eqs. (14), (15) 

B1 - - T T-1 [ Aq(Aq)r ) T-1 (29) 
T Aq 

TAy(Ay) TTT (Ay(Ay)r)  T 
A,  = (Ay) rT_ 1 : ,q = r r (30) 

so that under assumption of identity (22) Ai and Bi satisfy 

A~ = Ir{Ay(Ay)T]uT B~ = -- t f[KiAq(Aq)rKi~uT (31) 
~ ( A y )  T Aq] - - \  (Aq)~K~ Aq ] 

Hi = UKiU T Hi+l = UKi+IU r. (32) 

Ki+ 1 is defined according to decomposition (13), replacing Ag by Aq, and Ax by 
Ay, respectively. Thus quasi-Newton methods are at least invariant under orthogonal 
transformations, that is, invariance at the level of the steepest descent method. 

Now let us assume that H0 may have the same transformation properties as Go 1. 
Suppose for example 

Ho = G~ -1. (33) 

(Presuming that Go is positively definite, else convergence of the method is 
questionable.) Thus Bi fulfills 

Ki Aq(Aq)rKi T Bi = - T (  - ~ - ~ q  ) T (34) 

and interestingly, taking into account relation (30); we can .conclude that for the 
quasi-Newton method the same invariant level applies as for the Newton method 
itself(H~ = TK~TT; Hi+l = TKi+ITT). 

Emphasis should be laid on the above-shown invariant levels, particularly attractive 
properties insofar as they characterize a certain optimality of the different minimi. 
zation schemes. Newton's method itself is hardly often practicable (exceptions are 
[7, 11, 17]). If, however, instead of putting H0 according to Eq. (28), the inverse 
Hessian is calculated only initially and subsequently used as a substitute for H0 in 
a quasi-Newton method, then improved convergence will be obtained. This was 
demonstrated for geometry optimizations by Bloemer and Bruner [7]. The success 
can be rationalized by taking into consideration the above-shown invariance. In 
case of unconventional choice of H0 according to Eq. (33) the quasi-Newton method 
fulfills the same optimality criterion as the Newton method itself. Particular 
dilations and rotations of molecular coordinates do not influence the speed with 
which the quasi-Newton method converges. Normalization or so-called rescaling 
of the gradient components as proposed in [2] is consequently superfluous. 

4. Discussion of Molecular Symmetry 

A molecule is moved under symmetry operations so that its final relative position 
is indistinguishable from the initial one. If  respective symmetry elements are absent 



Invariance Criteria and Symmetry Conservation Rules for Geometry Optimizations 285 

in the molecule both positions can be distinguished and the symmetry operations 
are normal rotations, reflections, etc. Present molecular symmetry elements may 
have an effect on the vector x of coordinates and corrections Ax, depending 
specifically on the type of coordinates used. Criteria upon which symmetry conser- 
vation is obtained with minimizations via Eq. (10) will now be shown. For this 
purpose it is convenient to distinguish between three kinds of coordinates: 

1. symmetry-adapted internal coordinates, including curvilinear internal group 
coordinates, 

2. (" external") Cartesian coordinates (note that symmetry conservation rules are 
given in [5] for the use of such coordinates in quasi-Newton methods) and 
spherical polar coordinates, 

3. coordinates obtained from 1 or 2 by a regular linear transformation. 

The three kinds of coordinates will be discussed separately. 

4.1. Symmetry-Adapted  ( Curvilinear ) Internal (Group) Coordinates 

Molecular symmetry can be expressed in 

g = P~g (35) 

G = P T G P  (36) 

so that 

H = P H P  r (37) 

and therewith 

Ax = PAx .  (38) 

Here P is a simple orthogonal matrix, causing permutations of the elements gt and 
gj, if applied on vector g. 

"1 

1 

p g= 
1 

1 

0 

1 

gl gl  

gi gj 

gy gi 
�9 o 

_gn_ _ gn. 

(39) 
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After subtracting an appropriate difference vector a (normally a zero vector) from 
x, we obtain 

x~ - a = P(x~  - a). (40) 

whereby 

g~(a) = const. H i ( a )  = const. (41) 

Thus subtracting a on both sides of Eq. (10) 

x~ - a = x~  - a - ~ , H , g ,  (42) 

one obtains 

x~+l - a = P(x~  - a) - ~ziPH~pTpg~ = P [ x i  - a - a~Higi] = P ( x ~ + l  - a),  

(43) 

which proves the conservation of symmetry for properly chosen (curvilinear) 
internal (group) coordinates. In other words, molecules described by this kind of 
coordinates are kept in the initial symmetry by applying minimization methods 
described by Eq. (10). 

4.2.  ( " E x t e r n a l " )  Car t e s ian  Coord ina te s ,  S p h e r i c a l  P o l a r  C o o r d i n a t e s  

Let the atomic positions be given by external Cartesian coordinates, then there are 
only some special cases where the effect of a symmetry operation can be described 
by a simple permutation matrix P. Else it is a more general orthogonal matrix R 
for rotations and reflections, which has to be applied to g , / t ,  x. We have 

g = R r g  (44) 

G = R T G R .  (45) 

The same holds for external spherical polar coordinates (R, 0, 9) if the centre of 
molecular symmetry has the coordinates (R = 0, 0, 9). Translations of the centre 
of the Cartesian coordinates system leave g and G constant, and therefore Ax. Thus 
centre of molecular symmetry and centre of the Cartesian coordinates need not be 
identical for the fulfillment of Eqs. (44), (45). Let the difference vector a be given, 
then (x~ - a) is the vector of atomic coordinates for a Cartesian system, the centre 
of which is identical with the centre of symmetry so that 

x~ - a = R ( x i  - a). (46) 

Substituting P by R in Eq. (43) the conservation of molecular symmetry may be 
easily shown in the same way as there. 

4.3.  C o o r d i n a t e s  O b t a i n e d  f r o m  Sec t s .  4 .1 or 4 .2  by  a R e g u l a r  N o n - O r t h o g o n a l  

L i n e a r  T r a n s f o r m a t i o n  

Let the vector x of the numerical values of the coordinates be obtained by a regular 
non-orthogonal linear transformation according to Eq. (5). Here y may be identified 
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with coordinates introduced under Sects. 4.1 or 4.2 to be suited for symmetry 
conservation. Hence 

y = Ry  (47) 

q = RTq, (48) 

but  

x = T R T  - i x  (49) 

g = ( T R T -  :)Tg, (50) 

it is shown that symmetry operations have now to be described by nonorthogonal 
matrices ( T P T - : ) .  Bearing in mind the invariance levels of the minimization 
methods it is obvious that neither the steepest descent method nor a conventionally 
started quasi-Newton method (Eq. (28)) guarantees a conservation of symmetry-  
more precisely, the first iteration of a geometry optimization on the basis of such 
coordinates must break the symmetry. However, the Newton- and unconventionally 
�9 started quasi-Newton methods (Eq. (33)) are invariant with respect to regular linear 
transformations. Under the assumption initially made that coordinate vector x is 
obtained from other coordinates suited for symmetry conservation it is clear that 
the latter two methods conserve molecular symmetry elements if applied to x. 

There remains the special problem of singularity of G in cases where 3N (N: number 
of atoms) external coordinates are employed. Strictly speaking, Newton's method 
need not be discussed if G-  1 does not exist. But it was shown in [8] that singularity 
can be avoided very easily if the origin of the Cartesian system is identical with one 
atomic position (atom a) and if another atom (b) lies on an axis (say x) whereas the 
position of a third atom (c) is in a plane spanned by two axes (for example x, y). 
With this special relative position of the molecule with respect to the coordinate 
system, the coordinates x~, y~, za, y~, zb, zc (subscript denotes the atom) can be 
excluded from the set of minimization variables so that the reduced matrix Grea 
remains regular. Moreover, it was shown in [8] how to set up a non-orthogonal 
transformation by which six gradient components vanish so that the respective 
coordinates remain constant under optimizations. Similar manipulations should be 
possible with polar spheroidal coordinates, for example. Two conclusions can be 
made: Symmetry conservation is total with Newton's method in this case of linear 
transformation of the coordinates 4.1 or 4.2, but steepest descent and quasi-Newton 
method retain the symmetry of the reduced gradient vector (3N - 6 components) 
only, and therefore the respective symmetry of the 3N - 6 coordinates of the 
molecule. (Clearly, convergence rates are also different.) 

Another special problem which should be mentioned is that two kinds of symmetry 
represented by linearity or planarity of the molecules are conserved by geometry 
optimizations with a broad scale of internal curvilinear coordinates (distances, 
angles, including dihedral angles between atoms). Changes of atomic distances 
along the lines through the nuclei cannot change linearity or planarity, whereas 
changes of the angles between the atoms do not influence planarity. Only changes 
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of a dihedral angle are capable of distorting planarity. Assuming that each of the 
respective rotational axes runs through two nuclei one has a symmetrical potential 

E(A~o) = E ( -  A~0) (51) 

with respect to the dihedral angle ~0 because the Hamiltonian of free molecules 
depends on atomic distances only. Thus 

( 0 E / ~ ) ~  ~ = 0. (52) 

As a consequence, the use of internal coordinates defined by means of the atoms 
only guarantees the conservation of planarity and linearity of the molecules along 
the path of optimization of their geometry. 

5. Numerical Examples 

Geometries of some molecules were optimized to give examples of symmetry 
conservation, symmetry breaking and making along the path of minimization. 
When making the choice of coordinates and molecules, emphasis has been laid on 
the ease of insight into the run of minimization. OCS and the anion (C12I)- satisfy 
the criterion. The molecules provide numerically simple but instructive illustrations 
of the basic principles derived in the previous sections. The CNDO/2 energy [18] 
was the function to be minimized, d-orbitals for sulphur, chlorine and iodine were 
included. Parameters for the iodine atom have been chosen according to [19]. 
The CNDO/2 was implemented by the author of this paper [9] in the quasi-Newton 
subroutine VA09A, which has become popular in solving geometry optimization 
problems [9, 12, 20, 21]. Main features of the programme [9] are that first partial 
derivatives with respect to curvilinear coordinates of the molecular geometry can 
be calculated explicitly by using analytical expressions as well as its scope from 
hydrogen to iodine. Methodical aspects were described particularly in [8, 12, 20]. 

5.1. (C12I)- 

Two sets of coordinates 1 and 2 of the molecular geometry were formed: 

1. bondlengths R(I, CP) = Yl 
R(I, C12) = Y2 

2. distances R(I, (CP, C12)) = xl 
R(CP, C12) = x2. 

The chlorine atoms are marked by superscripts for distinction, xl is the distance 
from the iodine atom to the group (C11, C12) and x2 is the distance of the non-bonded 
chlorine atoms. Figure 1 shows the geometrical model to start with. 

Yl = Y2 (53) 

implies 

aE/~yx = ~E/~y2. (54) 
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Fig. 1. (Cl2I)-: arrows denote geometry 
parameters - filled circles : atoms unaffected 
under variations of the geometry para- 
meters 

Cl 1 REI.tct{ct2)2 I Cl 2 
7= : 9 

i i 
. . . . . . . . . . . . . . . . . . . . . . . . . .  

R(Cd, C/2) 

This leads to the consequence that the parameter set 1 is suitable for conserving 
the initial symmetry D~h along the path o f  geometry optimization since the whole 
model has been constrained to collinearity. It should be mentioned that  only one 
degree o f  freedom appears effective, al though two parameters (yl and Y2) may be 
used explicitly. Under  these circumstances the advanced minimization method [22] 
is reduced to the classical regula falsi. 

The parameter  set 2 is suitable for conserving the symmetry C~v only. This can be 
easily seen with Fig. 1. The gradient vector reads initially 

0 
[~ -ll][OE/OYl]=[OE/Oxl]=[OE/~y2]'[OE/OyzJ I~E/~x2] (55) 

Thus, let OE/Ox2 # 0 then it is immediately obtained that the minimization o f  
E(x~, x2) yields y~ # Y2 after a single iteration so that  the symmetry D~h is broken 
or, more precisely, reduced to C~v. However,  D~oh was restored with high accuracy 
after achieving convergence. The minimization histories 1 and 2 are listed in Table 
1. Explicitly optimized coordinates xl, x2 are converted into the more familiar yl ,  
Y2 for comparisons.  The minimization was not  sensitive to the non-or thogonal  
linear t ransformation relating 1 to 2. An  almost identical number  o f  iterations 
indicates that the estimation of  the force constant  matrix was successful in the 
course of  the minimization of  E(xx, x2) and E(yl, Y2) as well. 

Table 1. Geometry optimization history of the C12I- molecule. (Relative energy: 
Ero~ = E + 45.592243290 a.u.; bondlengths in Angstrom units) 

Itera- D| conserved C| conserved 
tion Erol[a.u.] R~-cl[A] R~-cll[/~] Ri-c]2[~] Erel[a.u.] 

0 0.030861027 2.1 2.1 2.1 0.030861027 
1 0.004352203 2.02850 2.1 2.02850 0.017430183 
2 0.000414418 1.97715 2.03099 1 . 9 7 5 3 9  0.002620658 
3 0.000003365 1.98998 1.97609 1.99023 0.000242475 
4 0.000000002 1.98894 1.99025 1.98915 0.000002683 
5 0.0 1.98891 1.98895 1 . 9 8 8 8 9  0.000000002 
6 convergent 1.98891 1.98892 0.0 

5.2. OCS 

Two parameter  sets o f  the molecular geometry were defined: 

3. bondlengths R(C, O) = Yl 
R(C, S) = y2 
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4. bondlength R(C, O) = xl 
distance R(Hp, S) = x2 
angle ~ C, Hp, S = x3. 

P. Scharfenberg 

0 mc.o; C S 
(~ 

3~ p Fig. 2. OCS: arrows denote geometry parameters 
4-the carbon atom and the helppoint Hp are fixed 

The initial model and the parameter set 4 are shown in Fig. 2. There exists no linear 
relation between 3 and 4. The coordinates 3 are sufficient to retain the initial 
symmetry C~v. In the case of set 4 the collinearity of the atoms is disturbed within 
the first iteration of the minimization. The complete progress of minimizing 
E(yl, Y2) and E(xl, x2, x3) is listed in Table 2, where x2, x3 are converted into 
R(C, S) and ZO,  C, S. It can be seen that the equilibrium geometry and therefore 
C~v symmetry was accurately achieved on the basis of coordinates 4 after 14 
iterations. This number is large compared with the minimization of E(y~, Y2), which 
is considerably more efficient because only 6 iterations were required to reach the 
minimum. The discrepancy is caused by the improper choice of coordinates 4 which 
are not only in contrast to the chemical bond conception. In addition, no linear 
transformation exists that improves the situation. 

5.3. H2CO 

Since the relevant stationary states are those with higher symmetry ((C12I)- : Don; 
OCS; Coov) the respective stationary points were also reached along the path of 
minimization of E(xl, x2) and E(xl, x2, x3). Clearly, coordinates like R(I, (CP, 
C12)), R(Hp, S), Z~C, Hp, S are artificial and their choice was made only for 
illustration. But there may be problems which could be solved quite easily by 
setting up such unconventional parameters of the molecular geometry. 

A possible example is the energy minimum path for the formaldehyde-hydroxy- 
carbene rearrangement. Normally, the symmetry C, is conserved along this path 
and this is the reason why there is no simple saddle point along this path, as pointed 
out recently [23]. However, a set of coordinates which does not cause conservation 
of planarity (Fig. 3) gives the simple saddle points V, Vll and minimum VI (num- 
bering according to [23]) and thus a quite similar result as the special procedure 
developed by Panci~ [24]. The calculated energy minimum paths are shown in Fig. 
3. (Note that the INDO method has been employed here in order to enable com- 
parisons with [23].) PanciFs approach requires the matrix G of second partials in 
order to calculate reaction paths without symmetry constraints. This implies expen- 
sive computational effort, but the optimization with properly chosen coordinates 
by means of which the symmetry can be broken has the advantage of economy. 
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Table 2. Geometry optimization history of the OCS molecule. (Relative energy: Er~l = E + 
36.119916607 a.u.; bondlengths in Angstrom units, bond angle in degrees - 360 ~ = 2~r) 

C| conserved Cs conserved 

Iter- Rc-o Rc-s Rc-s Rc-o ~ O ,  C, S 
ation Erol[a.u.] [A] [A] [A] [A] [o] Er~][a.u.] 

0 1.75 1.3 180.0 0.040593802 
1 1.14189 1.24175 161.297 no SCF-convergence 

0 0.040593802 1.3 1.75 1.71369 1.20344 180.0 0.002975516 
l a  0.034479050 1.12731 1.68505 0.99744 1.21567 147.448 1.647971589 
lb 0.002974887 1.20344 1.71369 1.69698 1.20366 179.763 0.001487639 
2 0.000486590 1.20990 1.68331 1.66683 1.21898 179.338 0.000198332 
3 0.000014289 1.21241 1.65994 1.65954 1.21109 179.242 0.000041295 
4 0.000000150 1.21291 1.66333 1.66342 1.21274 179.303 0.000007453 
5 0.000000001 1.21275 1.66315 1.66327 1.21277 179.310 0.000007247 
6 0.0 1.21277 1.66314 1.66312 1.21279 179.327 0.000006367 
7 convergent 1.66294 1.21281 179.365 0.000006165 
8 1.66273 1.21284 179.443 0.000004906 
9 1.66251 1.21287 179.606 0.000002846 

10 1.66245 1.21288 179.929 0.000000667 
11 1.66269 1.21284 179.998 0.000000255 
12 1.66305 1.21278 179.976 0.000000097 
13 1.66316 1.21275 179.993 0.000000002 
14 1.66314 1.21277 179.999 0.0 

o 
E 

100 

50 

, ,  

IB planar {C s) 
| no symmetry (C1) 

j 

120 100 50 
i i i J 

0 -20 -40 
,g. O,C,H 1 [ o ]  

Fig. 3. INDO-Energy minimum paths for the formaldehyde-hydroxycarbene rearrangement 
(I: formaldehyde, III: trans-hydroxycarbene, VIII: cis-hydroxycarbene); inset: geometry 
parameters suited for breaking the symmetry C~ 
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